Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.552
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731433

RESUMO

The aim of this study was to investigate how dietary modifications with pomegranate seed oil (PSO) and bitter melon aqueous extract (BME) affect mineral content in the spleen of rats both under normal physiological conditions and with coexisting mammary tumorigenesis. The diet of Sprague-Dawley female rats was supplemented either with PSO or with BME, or with a combination for 21 weeks. A chemical carcinogen (7,12-dimethylbenz[a]anthracene) was applied intragastrically to induce mammary tumors. In the spleen of rats, the selected elements were determined with a quadrupole mass spectrometer with inductively coupled plasma ionization (ICP-MS). ANOVA was used to evaluate differences in elemental composition among experimental groups. Multivariate statistical methods were used to discover whether some subtle dependencies exist between experimental factors and thus influence the element content. Experimental factors affected the splenic levels of macroelements, except for potassium. Both diet modification and the cancerogenic process resulted in significant changes in the content of Fe, Se, Co, Cr, Ni, Al, Sr, Pb, Cd, B, and Tl in rat spleen. Chemometric analysis revealed the greatest impact of the ongoing carcinogenic process on the mineral composition of the spleen. The obtained results may contribute to a better understanding of peripheral immune organ functioning, especially during the neoplastic process, and thus may help develop anticancer prevention and treatment strategies.


Assuntos
Momordica charantia , Extratos Vegetais , Óleos de Plantas , Punica granatum , Ratos Sprague-Dawley , Baço , Animais , Baço/efeitos dos fármacos , Baço/metabolismo , Feminino , Ratos , Punica granatum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Momordica charantia/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Suplementos Nutricionais , Sementes/química , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/metabolismo
2.
Sci Total Environ ; 897: 165348, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429473

RESUMO

Cadmium (Cd) is a heavy metal that has been widely reported to be linked to the onset and progression of breast cancer (BC). However, the mechanism of Cd-induced mammary tumorigenesis remains elusive. In our study, a transgenic mouse model that spontaneously develops tumors through overexpression of wild-type Erbb2 (MMTV-Erbb2) was constructed to investigate the effects of Cd exposure on BC tumorigenesis. The results showed that oral exposure to 3.6 mg/L Cd for 23 weeks dramatically accelerated tumor appearance and growth, increased Ki67 density and enhanced focal necrosis and neovascularization in the tumor tissue of MMTV-Erbb2 mice. Notably, Cd exposure enhanced glutamine (Gln) metabolism in tumor tissue, and 6-diazo-5-oxo-l-norleucine (DON), a Gln metabolism antagonist, inhibited Cd-induced breast carcinogenesis. Then our metagenomic sequencing and mass spectrometry-based metabolomics confirmed that Cd exposure disturbed gut microbiota homeostasis, especially Helicobacter and Campylobacter abundance remodeling, which altered the gut metabolic homeostasis of Gln. Moreover, intratumoral Gln metabolism profoundly increased under Cd-elevated gut permeability. Importantly, depletion of microbiota with an antibiotic cocktail (AbX) treatment led to a significant delay in the appearance of palpable tumors, inhibition of tumor growth, decrease in tumor weight, reduction in Ki67 expression and low-grade pathology in Cd-exposed MMTV-Erbb2 mice. Also, transplantation of Cd-modulated microbiota decreased tumor latency, accelerated tumor growth, increased tumor weight, upregulated Ki67 expression and exacerbated neovascularization as well as focal necrosis in MMTV-Erbb2 mice. In summary, Cd exposure induced gut microbiota dysbiosis, elevated gut permeability and increased intratumoral Gln metabolism, leading to the promotion of mammary tumorigenesis. This study provides novel insights into environmental Cd exposure-mediated carcinogenesis.


Assuntos
Microbioma Gastrointestinal , Neoplasias Mamárias Experimentais , Camundongos , Animais , Cádmio/toxicidade , Glutamina , Antígeno Ki-67 , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Transformação Celular Neoplásica/metabolismo , Camundongos Transgênicos , Carcinogênese/induzido quimicamente , Necrose
3.
Viruses ; 15(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37243196

RESUMO

Mouse mammary tumor virus (MMTV) is a betaretrovirus that causes breast cancer in mice. The mouse mammary epithelial cells are the most permissive cells for MMTV, expressing the highest levels of virus upon infection and being the ones later transformed by the virus due to repeated rounds of infection/superinfection and integration, leading eventually to mammary tumors. The aim of this study was to identify genes and molecular pathways dysregulated by MMTV expression in mammary epithelial cells. Towards this end, mRNAseq was performed on normal mouse mammary epithelial cells stably expressing MMTV, and expression of host genes was analyzed compared with cells in its absence. The identified differentially expressed genes (DEGs) were grouped on the basis of gene ontology and relevant molecular pathways. Bioinformatics analysis identified 12 hub genes, of which 4 were up-regulated (Angp2, Ccl2, Icam, and Myc) and 8 were down-regulated (Acta2, Cd34, Col1a1, Col1a2, Cxcl12, Eln, Igf1, and Itgam) upon MMTV expression. Further screening of these DEGs showed their involvement in many diseases, especially in breast cancer progression when compared with available data. Gene Set Enrichment Analysis (GSEA) identified 31 molecular pathways dysregulated upon MMTV expression, amongst which the PI3-AKT-mTOR was observed to be the central pathway down-regulated by MMTV. Many of the DEGs and 6 of the 12 hub genes identified in this study showed expression profile similar to that observed in the PyMT mouse model of breast cancer, especially during tumor progression. Interestingly, a global down-regulation of gene expression was observed, where nearly 74% of the DEGs in HC11 cells were repressed by MMTV expression, an observation similar to what was observed in the PyMT mouse model during tumor progression, from hyperplasia to adenoma to early and late carcinomas. Comparison of our results with the Wnt1 mouse model revealed further insights into how MMTV expression could lead to activation of the Wnt1 pathway independent of insertional mutagenesis. Thus, the key pathways, DEGs, and hub genes identified in this study can provide important clues to elucidate the molecular mechanisms involved in MMTV replication, escape from cellular anti-viral response, and potential to cause cell transformation. These data also validate the use of the MMTV-infected HC11 cells as an important model to study early transcriptional changes that could lead to mammary cell transformation.


Assuntos
Neoplasias Mamárias Experimentais , Vírus do Tumor Mamário do Camundongo , Camundongos , Animais , Vírus do Tumor Mamário do Camundongo/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Regulação da Expressão Gênica
4.
Endocrinology ; 164(2)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36269749

RESUMO

Female SV40 C3(1) T-antigen (C3(1)/TAg) transgenic mice develop mammary tumors that are molecularly similar to human basal-like breast cancers with 100% incidence at 16 weeks of age. To determine the requirement for growth hormone (GH) signaling in these tumors, genetic crosses were used to create cohorts of female mice that were homozygous for a floxed growth hormone receptor (Ghr) gene and carried one copy each of the Rosa-Cre-ERT2 transgene and the C3(1)/TAg transgene (Ghrflox/flox; Rosa-Cre-ERT2; C3(1)/TAg+/0 mice). When the largest mammary tumor reached 200 mm3, mice were treated with tamoxifen to delete Ghr or with vehicle as a control. An additional group of Ghrflox/flox; C3(1)/TAg+/0 mice were also treated with tamoxifen when the largest mammary tumor reached 200 mm3 as a control for the effects of tamoxifen. After 3 weeks, tumors in mice in which Ghr was deleted began to shrink while vehicle and tamoxifen treatment control mouse tumors continued to grow. Pathological analysis of tumors revealed similar growth patterns and varying levels of necrosis throughout all groups. A decrease in cancer cell proliferation in Ghr-/- tumors relative to controls was observed as measured by Ki67 immunohistochemistry labeling index. These data suggest that even established C3(1)/TAg mammary tumors are dependent on the GH/IGF-1 axis.


Assuntos
Hormônio do Crescimento , Neoplasias Mamárias Experimentais , Animais , Feminino , Humanos , Camundongos , Antígenos Transformantes de Poliomavirus/genética , Proliferação de Células , Hormônio do Crescimento/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Transgênicos , Tamoxifeno/farmacologia , Receptores de Somatostatina/genética
5.
Breast Cancer Res ; 24(1): 41, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715861

RESUMO

BACKGROUND: The majority of BRCA1-mutant breast cancers are characterized by a triple-negative phenotype and a basal-like molecular subtype, associated with aggressive clinical behavior. Current treatment options are limited, highlighting the need for the development of novel targeted therapies for this tumor subtype. METHODS: Our group previously showed that EZH2 is functionally relevant in BRCA1-deficient breast tumors and blocking EZH2 enzymatic activity could be a potent treatment strategy. To validate the role of EZH2 as a therapeutic target and to identify new synergistic drug combinations, we performed a high-throughput drug combination screen in various cell lines derived from BRCA1-deficient and -proficient mouse mammary tumors. RESULTS: We identified the combined inhibition of EZH2 and the proximal DNA damage response kinase ATM as a novel synthetic lethality-based therapy for the treatment of BRCA1-deficient breast tumors. We show that the combined treatment with the EZH2 inhibitor GSK126 and the ATM inhibitor AZD1390 led to reduced colony formation, increased genotoxic stress, and apoptosis-mediated cell death in BRCA1-deficient mammary tumor cells in vitro. These findings were corroborated by in vivo experiments showing that simultaneous inhibition of EZH2 and ATM significantly increased anti-tumor activity in mice bearing BRCA1-deficient mammary tumors. CONCLUSION: Taken together, we identified a synthetic lethal interaction between EZH2 and ATM and propose this synergistic interaction as a novel molecular combination for the treatment of BRCA1-mutant breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1 , Neoplasias da Mama , Proteína Potenciadora do Homólogo 2 de Zeste , Indóis , Inibidores de Proteínas Quinases , Piridonas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/deficiência , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Indóis/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Mutações Sintéticas Letais
6.
Endocrinology ; 163(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35569056

RESUMO

Dysregulation of cholesterol homeostasis is associated with many diseases such as cardiovascular disease and cancer. Liver X receptors (LXRs) are major upstream regulators of cholesterol homeostasis and are activated by endogenous cholesterol metabolites such as 27-hydroxycholesterol (27HC). LXRs and various LXR ligands such as 27HC have been described to influence several extra-hepatic biological systems. However, disparate reports of LXR function have emerged, especially with respect to immunology and cancer biology. This would suggest that, similar to steroid nuclear receptors, the LXRs can be selectively modulated by different ligands. Here, we use RNA-sequencing of macrophages and single-cell RNA-sequencing of immune cells from metastasis-bearing murine lungs to provide evidence that LXR satisfies the 2 principles of selective nuclear receptor modulation: (1) different LXR ligands result in overlapping but distinct gene expression profiles within the same cell type, and (2) the same LXR ligands differentially regulate gene expression in a highly context-specific manner, depending on the cell or tissue type. The concept that the LXRs can be selectively modulated provides the foundation for developing precision pharmacology LXR ligands that are tailored to promote those activities that are desirable (proimmune), but at the same time minimizing harmful side effects (such as elevated triglyceride levels).


Assuntos
Receptores X do Fígado , Neoplasias Mamárias Experimentais , Células Mieloides , Receptores de Esteroides , Animais , Colesterol/metabolismo , Feminino , Ligantes , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Células Mieloides/metabolismo , Células Mieloides/patologia , Receptores Nucleares Órfãos/genética , Receptores Nucleares Órfãos/metabolismo , RNA/genética , RNA/metabolismo , Receptores de Esteroides/metabolismo
7.
Chem Res Toxicol ; 35(2): 275-282, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050609

RESUMO

Many chemotherapeutic drugs exert their cytotoxicity through the formation of DNA modifications (adducts), which interfere with DNA replication, an overactive process in rapidly dividing cancer cells. Side effects from the therapy are common, however, because these drugs also affect rapidly dividing noncancerous cells. Hypoxia-activated prodrugs (HAPs) have been developed to reduce these side effects as they preferentially activate in hypoxic environments, a hallmark of solid tumors. CP-506 is a newly developed DNA-alkylating HAP designed to exert strong activity under hypoxia. The resulting CP-506-DNA adducts can be used to elucidate the cellular and molecular effects of CP-506 and its selectivity toward hypoxic conditions. In this study, we characterize the profile of adducts resulting from the reaction of CP-506 and its metabolites CP-506H and CP-506M with DNA. A total of 39 putative DNA adducts were detected in vitro using our high-resolution/accurate-mass (HRAM) liquid chromatography tandem mass spectrometry (LC-MS3) adductomics approach. Validation of these results was achieved using a novel strategy involving 15N-labeled DNA. A targeted MS/MS approach was then developed for the detection of the 39 DNA adducts in five cancer cell lines treated with CP-506 under normoxic and hypoxic conditions to evaluate the selectivity toward hypoxia. Out of the 39 DNA adducts initially identified, 15 were detected, with more adducts observed from the two reactive metabolites and in cancer cells treated under hypoxia. The presence of these adducts was then monitored in xenograft mouse models bearing MDA-MB-231, BT-474, or DMS114 tumors treated with CP-506, and a relative quantitation strategy was used to compare the adduct levels across samples. Eight adducts were detected in all xenograft models, and MDA-MB-231 showed the highest adduct levels. These results suggest that CP-506-DNA adducts can be used to better understand the mechanism of action and monitor the efficacy of CP-506 in vivo, as well as highlight a new role of DNA adductomics in supporting the clinical development of DNA-alkylating drugs.


Assuntos
Adutos de DNA/análise , DNA Bacteriano/análise , DNA/análise , Hipóxia/tratamento farmacológico , Pró-Fármacos/química , Animais , Bovinos , Feminino , Humanos , Hipóxia/metabolismo , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Células Tumorais Cultivadas
8.
Molecules ; 27(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35056792

RESUMO

Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with protective effects in several chronic diseases, including breast cancer. This diet is characterized by the consumption of abundant plant foods and olive oil as the principal source of fat, which is considered one of the main components with potential antioxidant, anti-inflammatory and anticancer effects. Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids (e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protective effect of this oil and its compounds on mammary carcinogenesis. Such effects account through complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their beneficial effects on human prevention and progression of the disease, evidence points to EVOO in the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising adjuvants in anticancer strategies.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Animais , Neoplasias da Mama/dietoterapia , Neoplasias da Mama/epidemiologia , Transformação Celular Neoplásica/efeitos dos fármacos , Dieta Mediterrânea , Feminino , Humanos , Neoplasias Mamárias Experimentais/dietoterapia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/prevenção & controle
9.
Int J Immunopathol Pharmacol ; 36: 20587384211059673, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35037503

RESUMO

Angiogenesis is the process of new vascular formation, which is derived from various factors. For suppressing cancer cell growth, targeting angiogenesis is one of the therapeutic approaches. Vascular endothelial growth factor family receptors, including Flt-1, Flk-1 and Flt-4, have been found to play an essential role in regulating angiogenesis. Rapamycin is a macrolide compound with anti-proliferative properties, while platelet factor-4 (PF-4) is an antiangiogenic ELR-negative chemokine. Rapamycin inhibits mTOR ligands activation, thus suppressing cell proliferation, while PF-4 inhibits cell proliferation through several mechanisms. In the present study, we evaluated the effects of rapamycin and platelet factor-4 toward breast carcinoma at the proteomic and genomic levels. A total of 60 N-Methyl-N-Nitrosourea-induced rat breast carcinomas were treated with rapamycin, platelet factor-4 and rapamycin+platelet factor-4. The tumours were subsequently subjected to immunohistochemical protein analysis and polymerase chain reaction gene analysis. Protein analysis was performed using a semiquantitative scoring method, while the mRNA expression levels were analysed based on the relative expression ratio. There was a significant difference in the protein and mRNA expression levels for the selected markers. In the rapamycin+platelet factor-4-treated group, the Flt-4 marker was downregulated, whereas there were no differences in the expression levels of other markers, such as Flt-1 and Flk-1. On the other hand, platelet factor-4 did not exhibit a superior angiogenic inhibiting ability in this study. Rapamycin is a potent antiangiogenic drug; however, platelet factor-4 proved to be a less effective drug of anti-angiogenesis on rat breast carcinoma model.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Fator Plaquetário 4/administração & dosagem , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Sirolimo/administração & dosagem , Animais , Feminino , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Metilnitrosoureia , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
10.
J Nanobiotechnology ; 20(1): 7, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983556

RESUMO

BACKGROUND: Inhibition of tumor angiogenesis through simultaneous targeting of vascular endothelial growth factor receptor (VEGFR)-1 and -2 is highly efficacious. An antagonist peptide of VEGFA/VEGFB, referred to as VGB3, can recognize and neutralize both VEGFR1 and VEGFR2 on the endothelial and tumoral cells, thereby inhibits angiogenesis and tumor growth. However, improved efficacy and extending injection intervals is required for its clinical translation. Given that gold nanoparticles (GNPs) can enhance the efficacy of biotherapeutics, we conjugated VGB3 to GNPs to enhance its efficacy and extends the intervals between treatments without adverse effects. RESULTS: GNP-VGB3 bound to VEGFR1 and VEGFR2 in human umbilical vein endothelial (HUVE) and 4T1 mammary carcinoma cells. GNP-VGB3 induced cell cycle arrest, ROS overproduction and apoptosis and inhibited proliferation and migration of endothelial and tumor cells more effectively than unconjugated VGB3 or GNP. In a murine 4T1 mammary carcinoma tumor model, GNP-VGB3 more strongly than VGB3 and GNP inhibited tumor growth and metastasis, and increased animal survival without causing weight loss. The superior antitumor effects were associated with durable targeting of VEGFR1 and VEGFR2, thereby inhibiting signaling pathways of proliferation, migration, differentiation, epithelial-to-mesenchymal transition, and survival in tumor tissues. MicroCT imaging and inductively coupled plasma mass spectrometry showed that GNP-VGB3 specifically target tumors and exhibit greater accumulation within tumors than the free GNPs. CONCLUSION: Conjugation to GNPs not only improved the efficacy of VGB3 peptide but also extended the intervals between treatments without adverse effects. These results suggest that GNP-VGB3 is a promising candidate for clinical translation.


Assuntos
Inibidores da Angiogênese , Ouro/química , Nanopartículas Metálicas/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Cell Mol Life Sci ; 79(1): 34, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34989869

RESUMO

New therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention. Our results indicate that the triazole-based selective reversible inhibitor of cathepsin X named Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) significantly reduces tumor progression, both in vitro in cell-based functional assays and in vivo in two independent tumor mouse models: the FVB/PyMT transgenic and MMTV-PyMT orthotopic breast cancer mouse models. One of the mechanisms by which cathepsin X contributes to cancer progression is the compensation of cathepsin-B activity loss. Our results confirm that cathepsin-B inhibition is compensated by an increase in cathepsin X activity and protein levels. Furthermore, the simultaneous inhibition of both cathepsins B and X with potent, selective, reversible inhibitors exerted a synergistic effect in impairing processes of tumor progression in in vitro cell-based assays of tumor cell migration and spheroid growth. Taken together, our data demonstrate that Z9 impairs tumor progression both in vitro and in vivo and can be used in combination with other peptidase inhibitors as an innovative approach to overcome resistance to antipeptidase therapy.


Assuntos
Catepsina B/antagonistas & inibidores , Catepsinas/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Animais , Catepsina B/metabolismo , Catepsinas/genética , Catepsinas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Inibidores Enzimáticos/química , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos Transgênicos , Invasividade Neoplásica , Infiltração de Neutrófilos/efeitos dos fármacos
12.
Inorg Chem ; 61(3): 1456-1470, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34995063

RESUMO

Indolo[2,3-d]benzazepines (indololatonduines) are rarely discussed in the literature. In this project, we prepared a series of novel indololatonduine derivatives and their RuII and OsII complexes and investigated their microtubule-targeting properties in comparison with paclitaxel and colchicine. Compounds were fully characterized by spectroscopic techniques (1H NMR and UV-vis), ESI mass-spectrometry, and X-ray crystallography, and their purity was confirmed by elemental analysis. The stabilities of the compounds in DMSO and water were confirmed by 1H and 13C NMR and UV-vis spectroscopy. Novel indololatonduines demonstrated anticancer activity in vitro in a low micromolar concentration range, while their coordination to metal centers resulted in a decrease of cytotoxicity. The preliminary in vivo activity of the RuII complex was investigated. Fluorescence staining and in vitro tubulin polymerization assays revealed the prepared compounds to have excellent microtubule-destabilizing activities, even more potent than the well-known microtubule-destabilizing agent colchicine.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Indóis/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
13.
Eur J Med Chem ; 227: 113869, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710747

RESUMO

New twelve in silico designed coumarin-based ERα antagonists, namely 3DQ-1a to 3DQ-1е, were synthesized and confirmed as selective ERα antagonists, showing potencies ranging from single-digit nanomolar to picomolar. The hits were confirmed as selective estrogen receptor modulators and validated as antiproliferative agents using MCF-7 breast cancer cell lines exerting from picomolar to low nanomolar potency, at the same time showing no agonistic activity within endometrial cell lines. Their mechanism of action was inspected and revealed to be through the inhibition of the Raf-1/MAPK/ERK signal transduction pathway, preventing hormone-mediated gene expression on either genomic direct or genomic indirect level, and stopping the MCF-7 cells proliferation at G0/G1 phase. In vivo experiments, by means of the per os administration to female Wistar rats with pre-induced breast cancer, distinguished six derivatives, 3DQ-4a, 3DQ-2a, 3DQ-1a, 3DQ-1b, 3DQ-2b, and 3DQ-3b, showing remarkable potency as tumor suppressors endowed with optimal pharmacokinetic profiles and no significant histopathological profiles. The presented data indicate the new compounds as potential candidates to be submitted in clinical trials for breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cumarínicos/farmacologia , Desenho de Fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
14.
Cancer Res ; 82(2): 278-291, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34666995

RESUMO

Metastasis is the main cause of cancer-related mortality. Despite intense efforts to understand the mechanisms underlying the metastatic process, treatment of metastatic cancer is still challenging. Here we describe a chemotherapy-induced, host-mediated mechanism that promotes remodeling of the extracellular matrix (ECM), ultimately facilitating cancer cell seeding and metastasis. Paclitaxel (PTX) chemotherapy enhanced rapid ECM remodeling and mechanostructural changes in the lungs of tumor-free mice, and the protein expression and activity of the ECM remodeling enzyme lysyl oxidase (LOX) increased in response to PTX. A chimeric mouse model harboring genetic LOX depletion revealed chemotherapy-induced ECM remodeling was mediated by CD8+ T cells expressing LOX. Consistently, adoptive transfer of CD8+ T cells, but not CD4+ T cells or B cells, from PTX-treated mice to naïve immunodeprived mice induced pulmonary ECM remodeling. Lastly, in a clinically relevant metastatic breast carcinoma model, LOX inhibition counteracted the metastasis-promoting, ECM-related effects of PTX. This study highlights the role of immune cells in regulating ECM and metastasis following chemotherapy, suggesting that inhibiting chemotherapy-induced ECM remodeling represents a potential therapeutic strategy for metastatic cancer. SIGNIFICANCE: Chemotherapy induces prometastatic pulmonary ECM remodeling by upregulating LOX in T cells, which can be targeted with LOX inhibitors to suppress metastasis.See related commentary by Kolonin and Woodward, p. 197.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Paclitaxel/efeitos adversos , Transferência Adotiva/métodos , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/imunologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Células MCF-7 , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos SCID , Paclitaxel/administração & dosagem , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
15.
Angew Chem Int Ed Engl ; 61(8): e202115800, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34842317

RESUMO

An ideal cancer treatment should not only destroy primary tumors but also improve the immunogenicity of the tumor microenvironment to achieve a satisfactory anti-tumor immune effect. We designed a carbonic anhydrase IX (CAIX)-anchored rhenium(I) photosensitizer, named CA-Re, that not only performs type-I and type-II photodynamic therapy (PDT) with high efficiency under hypoxia (nanomolar-level phototoxicity), but also evokes gasdermin D (GSDMD) mediated pyroptotic cell death to effectively stimulate tumor immunogenicity. CA-Re could disrupt and self-report the loss of membrane integrity simultaneously. This promoted the maturation and antigen-presenting ability of dendritic cells (DCs), and fully activated T cells dependent adaptive immune response in vivo, eventually eliminating distant tumors at the same time as destroying primary tumors. To the best of our knowledge, CA-Re is the first metal complex-based pyroptosis inducer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Anidrase Carbônica IX/antagonistas & inibidores , Inibidores da Anidrase Carbônica/farmacologia , Complexos de Coordenação/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Animais , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Células Dendríticas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Piroptose/efeitos dos fármacos , Rênio/química , Rênio/farmacologia , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Hipóxia Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
16.
Bioorg Chem ; 119: 105547, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906858

RESUMO

CDK4/6 were attractive chemotherapeutic targets for the treatment of malignant tumors, CDK4/6 selective inhibitors have made outstanding contributions in the treatment of breast cancer. However, these inhibitors share a single skeleton of N-(pyridin-2-yl) pyrimidin-2-amine which cannot overcome the side effects in clinical application. In our previous study, an N'- acetylpyrrolidine-1-carbohydrazide was hit as the initial fragment by analyzing the active site characteristics of CDK6. Two series of N-(pyridin-3-yl) proline were obtained by fragment growth method. The QSAR study was carried out according to the in vitro activities data against CDK4/6, and two compounds 7c and 7p with potent inhibitory activities were found to interact with CDK4 in different binding conformation. They showed potential inhibition of cell proliferation against the breast cancer cell, and 7c exhibited promised anti-breast cancer effect in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Prolina/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Estrutura Molecular , Prolina/síntese química , Prolina/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
17.
Eur J Med Chem ; 228: 114029, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871840

RESUMO

Achieving selective release of chemical anticancer agents and improving therapeutic efficacy has always been a hot spot in the field of cancer research, yet how to achieve this remains a great challenge. In this work, we constructed a novel chemical anticancer agent (named MCLOP) by introducing naphthalimide into the skeleton of methylene blue (MB). Under the stimulation by cellular hypochlorous acid (HClO) and visible light, selective release of active naphthalimide can be achieved within breast cancer cell lines, the release process of which can be tracked visually using near-infrared fluorescence of MB (685 nm). More importantly, we developed biotinylated curcumin (Cur-Bio) as a new chemosensitizer, which significantly enhanced the ability of MCLOP to induce autophagic cell death of breast cancer cells. This synergistic treatment strategy exhibited an excellent anti-proliferation effect on breast cancer cells in vitro, three-dimensional (3D) cell sphere model, and mouse tumor model in vivo. This work provides a new strategy for the treatment of breast cancer and also opens new opportunities for the efficient treatment of cancer with curcumin-based chemosensitizer.


Assuntos
Antineoplásicos/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Naftalimidas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Biotinilação , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Curcumina/síntese química , Curcumina/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
18.
Angew Chem Int Ed Engl ; 61(4): e202114373, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34811855

RESUMO

In chemodynamic therapy (CDT), the levels of reactive oxygen species (ROS) production plays an important role for evaluating the therapeutic efficacy. However, the high levels of glutathione (GSH) in tumor cells consume the ROS, directly reducing the therapeutic efficiency. Herein, we synthesized carbon-based nanoparticle (Cu-cys CBNPs) using one-pot strategy, which consume GSH via redox reactions to produce Cu+ that catalyze H2 O2 to produce . OH, thus the ROS level was observably increased through this synergistic effect. In vivo experiments further revealed that Cu-cys CBNPs could effectively inhibit tumor growth. Additionally, Cu-cys CBNPs can affect the activity of some protein sulfhydryl groups in cells, which was assessed by rdTOP-ABPP assay. In general, this study not only provides a potential CDT drug, but also provides a strategy for one-pot synthesis of multifunctional nanomaterials.


Assuntos
Antineoplásicos/farmacologia , Carbono/farmacologia , Cobre/farmacologia , Nanopartículas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Carbono/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa/química , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Oxirredução
19.
ACS Appl Mater Interfaces ; 14(1): 361-372, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34931793

RESUMO

Multiple drug-resistance mechanisms originate from defensive pathways in cancer and are associated with the unsatisfied efficacy of chemotherapy. The combination of small interfering RNA (siRNA) and chemotherapeutics provides a strategy for reducing drug efflux but requires more delivery options for clinical translation. Herein, multidrug resistance protein 1 (MDR1) siRNA is used as the skeleton to assemble chemotherapeutic cisplatin (CDDP) and divalent copper ion (Cu2+) for constructing a carrier-free Cu-siMDR-CDDP system. Cu-siMDR-CDDP specifically responds and disassembles in the acidic tumor microenvironment (TME). The released CDDP activates cascade bioreactions of NADPH oxidases and superoxide dismutase to generate hydrogen peroxide (H2O2). Then a Cu2+-catalyzed Fenton-like reaction transforms H2O2 to hydroxyl radicals (HO•) and causes glutathione (GSH) depletion to disrupt the redox adaptation mechanism of drug-resistant cancer cells. Besides, delivery of MDR1 siRNA is facilitated by HO•-triggered lysosome destruction, thus inhibiting P-glycoprotein (P-gp) expression and CDDP efflux. The unique design of Cu-siMDR-CDDP is to exploit siRNA as building blocks in regulating the self-assembly behavior, and integration of functional units simultaneously alleviates limitations caused by drug-resistance mechanisms. Such a carrier-free system shows synergistic chemo/chemodynamic/RNA interference therapy in suppressing tumor growth in vivo and has the reference value for overcoming drug resistance.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Cisplatino/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Terapêutica com RNAi , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Cobre/química , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Teste de Materiais , Camundongos , Imagem Óptica , Tamanho da Partícula , RNA Interferente Pequeno/química , Células Tumorais Cultivadas
20.
Eur J Med Chem ; 228: 114013, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34864330

RESUMO

Heat shock protein 90 (HSP90) is involved in the stabilization and activation of oncoproteins, rendering it essential for oncogenic transformation. However, the HSP90 inhibitors evaluated to date have not led to the expected effects in cancer therapy. Herein, we systematically described the design, synthesis, and evaluation of HSP90 degraders based upon the proteolysis-targeting chimera (PROTAC) strategy. The results showed that the candidate compound 16b (BP3) potently degraded HSP90 and effectively inhibited the growth of human breast cancer cells. When used as a single agent, BP3 led to effective tumor suppression in mice. These findings demonstrate that our HSP90-targeting PROTAC strategy has potential novel applications in breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Proteólise/efeitos dos fármacos , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA